Altret Industries Private Limited

Chemical Oxidation with CHLORINE

In the field of Waste Water treatment, chemical oxidants such as chlorine, ozone \& hydrogen peroxide are widely used for disinfections, removing organic materials that are resistance to biological \& other treatment processes \& conversion of Cyanides to innocuous products. Use of chlorine as a disinfectant destroys or inactivates bacteria present in waste water before it is discharged into receiving streams. Chlorine rapidly penetrates bacterial cells \& kills the bacteria. However, the effectiveness of chlorine is influenced greatly by the physical \& chemical characteristics of wastewater.

Initially when chlorine is added to water, it forms by chlorous acid $\mathrm{HOCl} \mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{HOC}+\mathrm{H}^{+}+\mathrm{Cl}^{-} \longrightarrow$
Hypochlorous acid is the disinfecting agent \& is referred to us free residual or free available chlorine. If any reducing agents such as ferrous ions or hydrogen sulphide are present in waste water, chlorine reacts with them \& the concentration of chlorine available to destroy pathogenic bacteria is reduced. The reduction reaction with hydrogen sulphide may be represented as:
$\mathrm{H}_{2} \mathrm{~S}+4 \mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+8 \mathrm{HCl}$
Waste water usually contain ammonia. In the presence of ammonia, HOCl reacts to form sequentially, monochloroamine $\left(\mathrm{NH}_{2} \mathrm{Cl}\right)$ dichloramine $\left(\mathrm{NHCl}_{2}\right)$ \& Trichloramine according to the following:

$$
\begin{array}{lll}
\mathrm{NH}_{3}+\mathrm{HOCl} \\
\mathrm{HOCl}+\mathrm{NH}_{2} \mathrm{Cl} \\
\mathrm{HOCl}+\mathrm{NHCl}_{2} & \mathrm{H}_{2} \mathrm{O}+\mathrm{NH}_{2} \mathrm{Cl} \\
\mathrm{H}_{2} \mathrm{O}+\mathrm{NHCl}_{2}
\end{array}
$$

Monochloramine \& Dichloramine are referred to as combined residuals \& are more stable then free residual but less effective as disinfectants. Once all ammonia has reacted, further addition of chlorine converts the combined residuals into a free residual, the conversion being proportional to the dose at the "break point". This is the limit beyond which all the residual chlorine is available as free chlorine.

Altret Industries Private Limited

Chlorination is used to oxidize cyanide in industrial waste water to harmless carbon \& nitrogen compounds. This is done in alkaline media at pH greater than 8.5 to prevent the generation of poisonous hydrogen cyanide gas.
$2 \mathrm{CN}+5 \mathrm{Cl}_{2}+8 \mathrm{OH}^{-} \longrightarrow 10 \mathrm{Cl}^{-}+2 \mathrm{CO}_{2}+\mathrm{N}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
The residual cyanide concentration after a reasonable reaction time, is very small.

Method of Testing of CHLORIDE

Method: - Argentometric Method

For Chloride as ppm: - Method of calculation of Chloride as ppm. Method given in Alfloc.
Our previous calculation for chloride method is given below:
Calculation: -
Chloride [Cl-]= $\left\{\mathrm{ml} \text { of } \mathrm{N} / 50(0.02 \mathrm{~N}) \mathrm{AgNO}_{3} / \mathrm{B} . \text { R. in ml }\right\}^{*} 1000 \mathrm{Mg} / \mathrm{L}(\mathrm{ppm})$
sample taken for titration in ml
Or

$$
\mathrm{Cl}-\mathrm{mg} / \mathrm{L}(\text { in } p p m)=\frac{1000 \times \text { B.R. }}{\text { Sample taken for titration }}
$$

Note:-

1) In this method the calculation for chloride is expressed in ppm as CaCO_{3}.
2) In this calculation Normality of AgNO_{3} solution considered as Std 0.02 N

Conclusion: - ppm of Chloride in this calculation consider Equivalent weight of calcium chloride [E.W.- 50]. SO ppm of Chloride is expressed in ppm as CaCO_{3}.

Modified calculation method consider Eq.Wt of Chloride (Cl^{-}) and in this method Normality is not considered as 0.02 N , but we standardize AgNO_{3} solution \& take the Normality whatever it is in the modified calculation method.

Per Mole ${ }^{\text {Tw }}$

Altret Industries Private Limited

Calculation of this method is given below:
Cl- mg/L $=$ B.R. $\times \mathrm{N} \times$ Eq.wt (35.45) $\times 10^{6}$
In ppm
ml sample taken x 1000
$=$ B.R. $\times \mathrm{N} \times$ Eq.wt (35.45) $\times 10^{3}$
ml sample taken $\times 1000$
= B.R. $\mathrm{x} \mathrm{N} \times$ Eq.wt 35.450
ml sample taken x 1000
Where,
B.R. = titration reading in ml
$\mathrm{N} \quad=$ Normality of AgNO_{3} solution
Eq. wt = equivalent weight of chloride $\left(\mathrm{Cl}^{-}\right)=35.450$

One example for both calculation method Ex: -
Sample taken for titration is 10 ml
B.R. $\{$ Titration reading\} is 5.0 ml

Normality of AgNO_{3} solution $=0.02 \mathrm{~N}$ and observed chloride in ppm from both methods

PREVIOUS METHOD: -

Cl - in $\mathrm{ppm}=\frac{1000 \times \text { B.R. }}{\text { Sample taken }}$

$$
\begin{aligned}
& =\frac{1000 \times 5.0}{10.0} \\
& =500 \mathrm{ppm}
\end{aligned}
$$

Where, B.R. $=5.0 \mathrm{ml}$
Sample taken: - 10.0 ml

MODIFIED METHOD:-

Cl- in ppm = B.R. $\times \mathrm{N} \times 35450$
Sample taken

Per Mole ${ }^{\text {Tw }}$

The chloride difference from both method is:

Difference $=$ previous chloride method - modified chloride method

$$
\begin{aligned}
& =500-354.5 \\
& =145.5 \mathrm{ppm} \text { Difference in }
\end{aligned}
$$

\% is 29.1

Conclusion: -

In this calculation, consider equivalent weight of chloride [E.W. - 35.45]

Difference between both the method: -

Previous method gives 29.1% more ppm chloride because it is expressed as Calcium Carbonate. Hence we determine chloride as per modified method.

Ref :-1. This calculation method is based on "ALFLOC" Water Treatment Service.
2. Amended method of calculation for Chloride as ppm is given in American Std.

Per Mole ${ }^{T M}$

